

ASA ist die Alternative zu ABS für den Außenbereich. Das Eigenschaftsprofil ist ähnlich, jedoch hat ASA eine höhere Hitze-Formbeständigkeit, ist witterungsbeständig und resistenter gegenüber UV-Strahlung.

BESCHREIBUNG

ASA (Acrylnitril-Styrol-Acrylester) hat die gleichen mechanischen Materialeigenschaften wie ABS. Der große Unterschied zwischen diesen beiden Materialien liegt aber in der höheren Witterungsbeständigkeit von ASA.

Gleichzeitig ist ASA ein UV-beständiges und ausbleichresistentes Allzweckmaterial. Das Material wird häufig während der Prototyping-Phasen verwendet. Es ist ein steifes, formstabiles, schlagzähes und belastbares Material, welches zudem hochwertige Oberflächen liefert.

Aufgrund der vielen Vorteile ist es sehr gut für Endanwendungsteile für den gewerblichen und infrastrukturellen Einsatz im Freien geeignet.

EIGENSCHAFTEN

- UV-beständig
- hohe Härte
- gute Kratzfestigkeit
- matt
- Hitzebeständig (HDT 102C°)

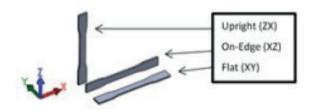
ANWENDUNGSBEISPIELE

- Langlebige Prototypen für Pass-, Form und Funktionstests
- Druckteile für den Außeneinsatz
- Anschauungsmodelle für Ausstellungen, Vertrieb und Marketing
- Gehäuse und Halterungen für elektrische Komponente

Mit ASA können gleichbleibende hochwertige Teile mit außergewöhnlicher UV-Stabilität und der besten Ästhetik aller FDM®-Thermoplaste hergestellt werden. Da es die mechanischen Eigenschaften von ABS erreicht oder sogar übertrifft, könnte ASA Ihr neues bevorzugtes allgemeines Prototyping-Material sein. Dank seiner UV-Beständigkeit eignet es sich besonders für Endverbraucherteile für den kommerziellen Außenbereich und Infrastrukturteile. Die große Auswahl an Farben und die matte Oberfläche machen es ideal für attraktive Prototypen für Sportartikel, Werkzeuge und Automobilkomponenten.

Dichte und mechanische Eigenschaften

Eigenschaften	Messemethode	Einheit	Wert
Dichte	ASTM D792	g/cm³	1,05
Zugfestigkeit, Streckgrenze (Type 1, 0,125", 0,2"/min)	ASTM D638	MPa	XZ Achse 29 ZX Achse 27
Zug-E-Modul (Type 1, 0,125", 0,2"/min)	ASTM D638	MPa	XZ Achse 2010 ZX Achse 1950
Reißdehnung (Type 1, 0,125", 0,2"/min)	ASTM D638	%	XZ Achse 2 ZX Achse 2
Biege-E-Modul (Method 1, 0,05"/min)	ASTM D790	MPa	XZ Achse 1870 ZX Achse 1630
Bruchdehnung (Method 1, 0,05"/min)	ASTM D790	%	XZ Achse kein Bruch ZX Achse 4
Izod-Schlagzähigkeit (Method A, 23°C)	ASTM D256	J/m	321
lzod-Kerbschlagzähigkeit (Method A, 23°C)	ASTM D256	J/m	64
Kugeldruckhärte	ASTM D785		82


Thermische Eigenschaften

Eigenschaften	Messemethode	Einheit	Wert
Wärmeformbeständigkeit HDT @ 66 psi, 0.125" unannealed	ASTM D648	°C	98
Wärmeformbeständigkeit HDT @ 264 psi, 0.125" unannealed	ASTM D648	°C	91
Vicat Erweichungstemperatur (Rate B/50)	ASTM D1525	°C	103
Glasübergangstemperatur (Tg)	DMA (SSYS)	°C	108
Wärmeausdehnungskoeffizient (flow)	ASTM E831	mm/mm/°C	8,79x10 ^{-0,6}
Wärmeausdehnungskoeffizient (xflow)	ASTM E831	mm/mm/°C	8,28x10 ^{-0,6}
Flammschutz	UL94		НВ

Elektrische Eigenschaften

Eigenschaften	Messemethode	Einheit	Wert
Volumenwiderstand	ASTM D257	ohm-cm	XZ Achse 1,0x10e14–1,0x10e15
Dielektrizitätszahl	ASTM D150-98		XZ Achse 2,97 – 3,04
Durchschlagsfestigkeit	ASTM D149-09 Method A	V/mil	XZ Achse 329

 $^{^3}$ Alle Werte für die elektrischen Eigenschaften wurden aus dem Durchschnitt von Testplatten ermittelt, die mit der Standard-Teiledichte (Vollmaterial) hergestellt wurden. Die Testplättchen waren 4,0 x 4,0 x 0,1 Zoll (102 x 102 x 2,5 mm) groß und wurden sowohl in flacher als auch in vertikaler Ausrichtung hergestellt. Die Bandbreite der Werte ist hauptsächlich das Ergebnis der unterschiedlichen Eigenschaften von Testplatten in flacher und vertikaler Ausrichtung.

*Quelle: Stratasys Ltd.

